- 產品描述
流感嗜血桿菌血清群b型鑒定
廣州健侖生物科技有限公司
我司還有很多種血清學診斷血清、血液檢測、免疫檢測產品、毒素檢測、凝集檢測、酶免檢測、層析檢測、免疫熒光檢測產品,。
( MOB:楊永漢)
【流感知識】
流感嗜血桿菌是一種沒有運動力的革蘭氏陰性桿菌。它是于1892年由費佛博士在流行性感冒的瘟疫中發現。它一般都是好氧生物,但可以成長為兼性厭氧生物。
流感嗜血桿菌zui初被誤認為是流行性感冒的病因,但直至1933年,當發現流行性感冒的病毒性病原后,才消除了這種誤解。不過,流感嗜血桿菌仍會導致其他不同種類的病癥。
本試劑盒主要用于對病菌細菌進行檢測,利用快速玻片凝集檢測技術
嗜血桿菌屬血清群A型鑒定
嗜血桿菌屬血清群A型鑒定
嗜血桿菌屬血清群A型鑒定
嗜血桿菌屬血清群A型鑒定
流感嗜血桿菌A/B型凝集抗血清Haemophilus
流感嗜血桿菌A/B型凝集抗血清Haemophilus
流感嗜血桿菌A/B/C型血清群
流感嗜血桿菌A/B/C型血清群
流感嗜血桿菌A/B/C3型凝集抗血清
流感嗜血桿菌A/B/C3型凝集抗血清
a型流感嗜血桿菌診斷血清
a型流感嗜血桿菌診斷血清
玻片凝集法鑒定流感嗜血桿菌
玻片凝集法鑒定流感嗜血桿菌
b型2ml流感嗜血桿菌快速玻片法檢測血清
b型2ml流感嗜血桿菌快速玻片法檢測血清
A型、B型流感嗜血桿菌多群血清
A型、B型流感嗜血桿菌多群血清
流感嗜血桿菌血清群b型鑒定
我司還提供其它進口或國產試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產品。
想了解更多的產品及服務請掃描下方二維碼:
【公司名稱】 廣州健侖生物科技有限公司
【市場部】 楊永漢
【】
【騰訊 】
【公司地址】 廣州清華科技園創新基地番禺石樓鎮創啟路63號二期2幢101-103
有證據 提示本病存在免疫調節異常。本病的含IgA1循環免疫復合物中, 發現有多聚的IgA1類風濕因子;抗α重鏈Fab片斷的IgG抗體增多 而IgM抗體減少。有趣的是HIV感染者也存在類似的抗免疫球蛋白 模式,卻不發生腎臟IgA沉積。這證明單單這些循環的自身抗體存 在,并不是系膜IgA沉積的原因。此外目前還發現了二種抗內皮細 胞的自身抗體(屬IgG)。本病腎組織中常有C3沉積,提示激活了 補體旁路途徑。然而IgA本身無激活補體的能力,IgA免疫復合物 雖可激活補體旁路途徑,但它結合補體和C3b的能力很弱。通常認 為在腎臟發生補體激活和形成膜攻擊復合物,需有IgG-IgA復合物 ,但是本病腎組織中有IgA和C3沉積而沒有IgG或IgM沉積卻很常見 。因此,本病補體激活的機制尚不清楚。細胞免疫也參與了發病 機制。已發現本病可有T輔助細胞(CD4)增加和T抑制細胞(CD8 )減少;具有轉換IgM合成為IgA合成的Ta4細胞增加,與之有關的 Sa1等位基因的頻度也增加;引起IgA同型轉換的TGFβ、促進產生 IgA的B淋巴細胞分化的IL-5和介導IgA產生的IL-4形成均有增加 。雖然T細胞和B細胞均參與了增加IgA合成的過程,但IgA合成增 多并不是系膜區IgA沉積的原因,因為在IgA多發性骨髓瘤病人中 罕見有組織IgA沉積。因此,結構-免疫學/理化異常才可能是系膜 IgA沉積的原因。
Evidence suggests that there is an immunoregulatory abnormality in this disease. Among the IgA1 circulating immune complexes of this disease, polyvalent IgA1 rheumatoid factor was found; the IgG antibody against the α heavy chain Fab fragment increased while the IgM antibody decreased. Interestingly, HIV-infected persons also have similar anti-immunoglobulin patterns but no renal IgA deposition. This proves that these circulating autoantibodies alone are not responsible for the deposition of mesangial IgA. In addition, two anti-endothelial autoantibodies (genus IgG) have been discovered. C3 deposition often occurs in the renal tissue of this disease, suggesting activation of the complement alternative pathway. However, IgA itself has no ability to activate complement. IgA immune complexes can activate the complement alternative pathway, but its ability to bind complement and C3b is weak. It is generally believed that IgG-IgA complexes are required for complement activation and membrane attack complexes in the kidney, but it is common for the disease to have IgA and C3 deposition but no IgG or IgM deposition. Therefore, the mechanism of complement activation in this disease is not yet clear. Cellular immunity also participates in the pathogenesis. It has been found that the disease may have increased T-helper (CD4) and T-suppressor (CD8) cells; the number of Ta4 cells synthesized by converting IgM synthesis to IgA increases, and the frequency of Sa1 alleles associated therewith also increases; causing IgA Isotype-transformed TGFβ, IL-5 that promotes IgA-producing B lymphocyte differentiation, and IL-4 formation that mediates IgA production are all increased. Although both T and B cells are involved in the process of increasing IgA synthesis, increased IgA synthesis is not responsible for IgA deposition in the mesangial area because of the rare tissue IgA deposition in IgA patients with multiple myeloma. Therefore, structural-immunological/physicochemical abnormalities may be responsible for the deposition of mesangial IgA.